(Q%W:4gwngJ7,,//

UCRL-JC--103972
DE90 012990

Projection Methods for Solving Nonlinear
Systems of Equations

Peter N. Brown
Lawrence Livermore National Laboratory
Livermore, CA

and

Youcef Saad
Nasa Ames Research Center

This paper was prepared for the proceedings of
the NATO Advanced Research Workshop on
"Defects, Singularities, and Patterns in
Nematic Liquid Crystals,"”

Orsay, France, May 28-June 1, 1990

. April 1990

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

MASTER /-

Dactmeny

QISTRIBUTIQN OF Thie S U y
"> UNLIMiTER

-M
b 2 X PRSPV
T

-
-



DISCLAIMER

This document was prepared as an account of work sponsored jointly by the U.S.
Department of Energy and the Defense Advanced Research Projects Agency.
Neither the United States Government ror the University of California nor any
of their employees, makes any warranty, express or implied, or assumes any
legal liubility or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or proceas disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the Univer-
sity of California. The views and opinions of authors expreseed herein do not
necessarily siate or reflect those of the United Stetes Government thereof, and
shall not be used for advertising or product endorsement purposes.



Projection methods for solving nonlinear systems of
equations

Peter N. Brown * Youcef Saad ?

April 1990

Abstract

T'his paper describes several nonlinear projection methods based on Krylov sub-
spaces and analyzes their convergence. The prototype of these methods is a technique
that generalizes the conjugate direction method by minimizing the norm of the func-
tion F' over some subspace. The emphasis of this paper is on nonlinear least squares
problems which can also be handled by this general approach.
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1 Introduction

The class of methods based on projections onto Krylov zubspaces has proven quite effective
in the solution of a wide range of problems in scientific computing. Because of the success of
these methods in handling linear systems of equations and large cigenvalue problems, much
effort has recently been devoted to extending their applicability to the solution of other types
of problems. For example, there has been substantial progress made in using these methods
for nonlinear equations arising in computational fluid dynamics [11,15]. In addition, recent
work has shown how they can be used to solve equations in control theory such as Lyapunov
equations {13], and there is current interest in solving time dependent partial differential
equations by the method of lines [9].

The purpose of this paper is to present some of the ideas used in general nonlinear
projection methods with particular attention giver to nonlinear Krylov subspace methods.
Algorithms of this family have been presented in [5] and a theoretical analysis was given in
[4]. In this paper we extend some of the ideas in [5,4] and will emphasize a new technique
stitable for solving large nonlinear least-squares problems.

When defining a nonlinear Krylov subspace method, there are two possibilities. First,
one can use a globally convergent modification of Newton’s iteration [8]. The linear systems
that arise in the course of the Newton iteration can be solved by either a direct solver or they
may be solved approximately by an iterative method. The class of methods based on the
latter approach is termed inezact Newton methods and several such methods were corsidered
in [1,2,3,5]. Newton’s method is essentially a linearization procedure. The mapping F is
locally approximated by a linear function and the resulting linear equations are solved to
yield the next point. The second approach to solving nonlinear equations does not rely on
linearization. Thus, fixed point iterations are inherently nonlinear as are descent methods
with accurate line searches. Another well-known example is that of the nonlinear conjugate
gradient iteration. In this paper we will discuss two methods, one in each of the two classes.

This distinction carries over to the definition of projection methods. In contrast with
the linear case, given a subspace K there are many different ways of defining a projection
process, of a Galerkin type, on the subspace. We can define a projected problem that is
linear or nonlinear or a combination of both in a sense that will be clarified later. The
advantages and disadvantages of each of these approaches is far from obvious. Certainly,
solving a purely linear projected problem carries the advantage of simplicity. On the other
hand, it may be the case that by linearizing locally, the function F will not be approximated
well enough globally, and this is likely to result in a poor global convergence of the outer
iteration.

We address the problem of solving a large nonlinear system, as well as that of minimizing a
function from R to RM. The solution methods proposed can indeed handle both problems,
aud the theory is often identical for both cases.



2 General Nonlinear Projection Methods

In this section we introduce the basic ideas of nonlincar projection methods. We start with
an overview of the different possibilities for defining nonlincar projection techniques. We
will then consider the particular case where the subspaces used are Krylov subspaces.

We are interested in solving the nonlinear system

F(u) =0, (2.1)

or minimizing the function

o
to
N

flw) = SIF (

where F is a nonlinear function from R¥ to RV.

At each iteration of a nonlinear projection method we select a subspace K, and we seek
an approximate solution to (2.1) or (2.2) of the form u + &, where é belongs to the subspace
K and u is the current iterate. We emphasize that the subspace K changes at every step of
the nonlinear iteration. The standard case examined in [5] is when A is a Krylov subspace
associated with the Jacobian of F' at the current iterate. The various nonlinear projection
methods we consider differ in the way the vector § is chosen in the subspace.

For both {2.1) and (2.2), a natural choice for the next iterate is to select a vector 6 in I
such that

flut8) = I+ 8)l3 (2.3)

is minimized. Note that although this is a nonlinear least squares problem, from a practical
point of view it is much easier to solve than the original problem if the dimension m of K
is much smalier than N. The motivation for this approach is that one can exploit a number
of highly efficient packages, such as MINPACK, for solving least squares problems of smail
dimension, such as (2.3).

Let V = [vy,vg, -+, 0] be an N x m matrix whose column vectors represent an orthonor-
mal basis of the subspace I\, and write é as § = Vy, where y is an m-vector. The function
(2.3) to be minimized becomes a function cf y defined by

ll nl P
9(y) = SilF(u + Vy)llz. (2.4)
The gradient of this fuuction at y is given by
Vo(y) = VI (u+Vy) ' Flu+ Vy), (2.5)

where J(r) is the Jacobian of F at the point # € RM. Notice that the gradient of f is
Vfi(u) = J(u)"F(2), and so we have the simple relation Vg(y) = VIV f(u + Vy).

A necessary, but not always sufficient, condition for y* to be a minimum of (2.1) is that
the gradient of ¢ at y* vanishes, 1.e., we must have

VT + V)T R+ V') = 0. (2.6)



This suggests simply solving the equations,
7 Iava AVES Jor) — 0o
(et VW) Pl 4 V) = 0 (2.7)

as a means for finding a minimizer of (2.4), although we know that the set ot solutions of
(2.7) is larger than the set of minimizers of (2.4). We refer to the above system of nonlinear
equations as the set of normal equations for minimizing (2.4).

When solving the above normal equations, the Jacobian must be reevaluated at each new
iterate and this may be uneconomical. An alternative is to freeze J(u + Vy)V to be the
system of vectors computed at, say, y = 0 and solve the set of modified equations:

JWV)TFu+Vy) =0 (2.8)
This is a particular case of the Petrov-Galerkin condition
WTF(u+ Vy) =0, (2.9)
where W is an N x m matrix. Two particular cases are noteworthy:
1. W =V which corresponds to the Galerkin case.
2. W = JV which was naturally derived above;

When F'is linear of the form F(z) = Az — b, the first case corresponds to the conjugate
gradient method, if F' is symmetric, and Arnoldi’s method when A is nonsymmetric, while
the second method corresponds to the class of methods based on minimizing the residual
norm, a few representatives of which are ORTHOMIN, GCR, and GMRES. See [14] for
details.

Finally, one may linearize F(u 4+ Vy) in (2.9) around u and derive fully linearized tech-
niques which correspond to solving the linear system

WT[F(u) + J(u)Vy] = 0, (2.10)

where J(u) is the Jacobian of F' at the current iterate u. The above linear system 1s m-
dimensional, and will admit a unique soluticn if the m x m matrix WTJ(u)V is nonsingular.
In the particular case where W = JV this condition is satisfied when the columns of JV are
linearly independent. We observe that (2.10) is a way of approximately solving the Newton
system F(u)+J(u)é = 0, at every step of Newton’s method for solving (2.1). Thus, the fully
linearized techniques are a particular case of a class of methods that are commonly referred
to as ineract Newton methods, and have been studied in the literature, (sce, e.g., [7,1,5,4]).
If at, every step the projected system (2.10) solves the linear system J(u)d = —F'(u) exactly,
then the method becomes the standard Newton iteration. The interesting cases are again

when W =Vand W =JV.



3 Fully linearized techniques

T this section we only consider the {ully Learized methods in the sense defined above and
summarize the results obtained in [5,4] for this case.

We start by recalling the nonlinear version of the Aruoldi (GMRES) algorithmn At every
outer iteration the algorithin generates an orthonurmal system of vectors v, (1 = 1,2, . m)
of the Krylov subspace K™ and then builds the vector §("). The Krylov subspace K™ is

defined by
K™ = K(J,r,m) = span{r,Jr.J?r,---  J™" 1},

for an arbitrary vector r and N x N matrix J.
Algorithm : Newtor-Arnoldi (Newton-GMRES)

1. Start: Choose ug and compute F(up). Set n = 0. Choose a tolerance €.

2. Arnoldi process:

o For an initial guess 60, form r(® = —F — J§© where F = F(u,) and J = J(u,).
o Compute 8 = ||r@||; and v, = r©/B.
o For y=1,2,---, do:
(a) Form Jv, and orthogonalize it against the previous vy,---,v; via
hi,] = (ij’vi)a 1= 1,2,--- 1j)
J
6J+1 = JUJ - Zh,-'jv,- (3.11)
=1

hyyr, = ||’7'J+1||2» and
Vj41 = f’j+1/h1+1.j'

(b) Compute the residual norm p; = ||+ JéW||,, of the solution 6¢) that would
be obtained if we stopped at this step.

(c) U p, < €, set m = j and go to (3).
3. Form the approrimate solui.on:

Arnoldi: Define H,, to be the m x m (Hessenberg) matrix whose (possibly) nonzero
entries are the coeflicients Ay, 1 <: <5, 1< j <m and define V,,, = [0y, 05, -+, 0]

e Iind the vector y, which solves the linear system I,y = fe;, where ¢y =
(1,0,---,0]7.

o Compute (™ = 60 =07 where 2(™ = V,.y,., and Upgy = Uy + 6™,

GMRES: Define I, to be the (m +1) xm (Hessenberg) matrix whose nonzero entries
are the coefficients h,,, 1 <7<y 41, 1 <j <mand define V,, = {o,00, 0]

)



e Find the vector y,, which minimizes ||Be; — H,yll2. where ¢; = [1,0,. ., 0}7, cvor
all vectors ¥ in R™.

e Compute 6™ = 5O 4+ 2(m) where 2™ = V,,y,., and Uppy = Up + &m),

4. Stopping test: If u,y, is determined to be a good enough approximation to a root of
(2.1), then stop, else set u, « up41 , n < n + 1, choose a new tolerance ¢,, and go to

(2)-

Therefore, in both Arnoldi and GMRES the outer iteration is of the form u,;; = u, +6(™)
where §™ = §© 4 2(™) with
z(m) = mema

and y,, is either the solution of an m x m linear system, for Arnoldi, or the solution of an
(m + 1) x m least squares problem for GMRES.

To guarantee global convergence, the usual inexact Newton methods must be inodified
in several possible ways. A few such modifications have been proposed in [5] and analyzed
in [4]. The simplest of these involves a backtracking line-search procedure which we now
consider. Given an iterate u, we define the next iterate in the form u, + Ap,, where p, is
any descent direction and X is selected by a procedure which ensures that the function f
decreases sufficiently at each iteration and that the iterate makes sufficient progress towards
the solution. One such procedure based on line-search backtracking is described below. The
search direction p,, is provided by an approximate solution to the Newton system J(u,)p =
—F(uy,), e.g., via Arnoldi or GMRES as indicated above. It is easy to show that p, is a
descent direction at u,, whenever we have

1 F(ua) + J(un)pallz < || F(un)l2,

which means that the residual norm fcr the Newton system J(u,)p == —F(u,) must be
strictly reduced from that associated witk p = 0. In particular, it is common to require that
a condition of the form

||F(u,.) + J(un)Pn“2 < 77n“F(“n)”2»

where 7, < 7 < 1, in the context of iterative methods.

In the procedure described below the two parameters 6,in, Omax are such that 0 < 6 <
Omax < 1, the simplest choice being Opin = Omax = 1/2. The procedure requiies another
parameter €* > 0 which is used to essentially rescale the initial step to prevent it from from
being too small.

Algorithm 3.1: General Backtracking Procedure

1. Set A = max{l,(‘Ml'l”g-m}.
2

”Pn

2. 1f f(un + Apn) € flun) + @AV f(un) pn, then set X, = X, and exit. Else:
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3. Choose X € [Omin A, OmaxA]; set A ). Go to (2).

The following theorem [1] is a gencral convergence result for sequences generated by the
¥ i Y
above algorithm.

Theorem 3.1 Let f = 3| F||3 be differentiable and assume that its gradient is such the

IVf(z) = ViWll2 < vllz = yllz, for all 2,y € R ( -

Let p,, be such that || F, + Jupall2 < || Fall2 for all n, with n < 1. Further, let each iterate be
chosen by the General Backtracking Algorithm. Then, either

Jim f(un) =0 (3.3)
or
lim [|pallz = co. (3.14)

Moreover, superlinear convergence will essentially take place with the additional condition
that n in the theorem is replaced by a sequence 7, — 0. Giobal convergence of a method
using a model trust region approach has also been examined in [4].

One of the most successful ways of using nonlinear Krylov subspace methods is for solv-
ing nonlinear equations in which the Jacobian of F' is not available or is too expensive to
compute’. The reason why we can still use the methods outlined above is that Krylov sub-
space methods do not require the Jacobian matrix J explicitly, but only its action on an
arbitrary vector v. This action can be well approximated by a difference quotient of the form

Ju)y ~ F(u+ov) - F(u),

g

where u is an approximation to a solution of (2.1), and ¢ is some small scalar. The above ob-
servation has been exploited in several papers [15,11,10,6] to accelerate fixed-point iterations
of the form

Upp1 = M(Un)

by applying the above techniques to the system F(u) = v — M(u) = 0. Typically, the
Jacobian of the mapping F' is a dense matrix and it may be impractical to compute it for
large problems. Brown (1] has given a local convergence analysis of Newion-Krylov methods
employing the above approximation.

'Note that the cost of producing the Jacobian may well take into account the initial programming effor.:.

-~J



4 Least squares projection methods

A nonlincar Krylov subspacc algorithm using a lcast squares approach can be briefly de-
scribed as follows.

Algorithm : Least Squares Krylov Subspace Method

1. Start: Choose the initial approximation u and compute F(u).

2. Arnoldi process:

Generate the orthogonal basis Vi, of the Krylov subspace K,,(J(u),v;), starting with
v = F(u)/|| F(u)ll2.

3. Solve Projected Nonlincar Least Squares Problem: Solve for y:

min S+ Vo) (= 1F(s+ Vo) 1), (4.15)

and set u — u + V3.
4. Test: If satisfied then stop. Else goto 2.

There might be an ambiguity in defining the solution y in step (3) when the minimum is
not unique. As will be seen later, ideally, we would like to choose t.e solution that is closest
to u, but this may be difficult to achieve in practice. We will come back to this shortly. The
attraction of the above algorithm is that there are no serious difficulties defining the iterates.
In theory, the potential problems are that the solution at every step is not unique and that
the sequence does not converge. However, the main disadvantage is that at every step an
exact search in a whole subspace must be carried out. In practice, the least squares problems
need to be solved only approximately. We require that the function f decreases, but like any
other descent method, the monotonic decrease of f(u,) does not guarantee convergence of
the sequence {u,}. One way in which this may be achieved is to demand that the decrease
in f at every step is sufficiently large. We would like to show a number of conditions to
ensure that )

bﬂ
AR
converges to zero, where 6, = u,4; — u,. Typically, when lim, .., €, = 0, the sequence u,,
will converge to a soluiion u. under fairly mild conditions.

If we were to perform an exact search in the subspace K then the following condition
must be satisfied:

€n = Vf(u,)T

(4.16)

VEI(un + Vy") Fun + Vy*) = 0, (4.17)

which reads

VIV fangy) = 0. (1.18)



In other words the new gradient of f must be orthogonal to the previous subspace of pro-
jectior. In practice, one may first sclect some unyq and then verify whether the simpler
condit’ .n

55V ftngr) = © (4.19)
is satisfied or nearly satisfied.
The above condition is still too stringent, since it requires solving a nonlinear equation in
one variable, and we wish to find a set of conditions that the approximate solution to (4.19)
must satisfv in order to ensure convergence. The next theorem establishes such a result.

Theorem 4.1 Let f : RV — R, be a continuously differentiable function on RN with
f(z) >0, for all z € RN, and such that there erists a constant v > 0 for which

Vf(z) = Vf(u)llz < 7llz - ul2 (4.20)

for every u,z € RN, Let @ > 0, 0 < p < 1 be given, and assume thai a sequence un,n =
0,1,---, can be constructed so that at each step u,43 = u, + 6,. where 6, # 0 and the
following conditions hold,

Vi(ua)T6 < 0 (4.21)
Vf(unt1) 80 2V f(un)"6, (4.22)
fluns) < flun) + @V f(un)Tén. (4.23)
Then,
lim Vf(un)T“;:”2 = 0. (4.24)

There are a few differences hetween this result and that of Theorem 6.3.3 of Dennis and
Schnabel [8]. First, the parameters g and « are basically unrelated, but unlike the theorem
in [8] this result does not guarantee the existence of the sequence u,,, which will be considered
separately. The proof is also different and is more related to the proof of a similar result for
Altman’s principle given in {12]. Note that condition (4.22, can be viewed as a modification

of Altman’s principle.
Proof: From (4.21) and (4.22) we have

0< (u=1Vf(u)8n < (Vf(unpr) = Vf(un))'é,
< NIV (unia) = VI (wa)llz - [|nll2.

Hence, using (4.20) we obtain,

0< (k= ) (un)"—

“6_’1”; < Y18nl2- (4.25)

(From condition (4.23) and vhe above inequality we get

. b a(l - s ]" ‘
fug) = flung) 2 —alldul Vf(u,, il 2 —7 [Vf( HfSu”zJ . (4.26)

9



Since the sequence f(u,) is decreasing and f .s brunded from below, the sequence f(u,) —
f(tn41) converges t» zero, and as a result of (4.26) the sequence Vf(u,)76,/[|6,12 also
converges to zero. [

Often, the condition (4.22) is replaced by the so-called j-condition

F(tar1) > f(un) + B9 f(ua) 5, (4.27)
In fact, the same result can be shown if we replace (4.23) by (4.27).

Theorem 4.2 Let f be a function that satisfies the same assumptions as Theorem (4.1).
Let a >0, 0 < 3 <1 be given and assume that a sequence u,,n = 0,1, ..., can be constructed

so that at each step u,q1 = u, + 9, and the conditions (4.21), (4.28) and (4.27) hold. Then,

: bn
e

0. (4.28)

Proof: We will show that the relation (4.25) is valid with u replaced by 5. Using the
mean value theorem we write

flut8) = f(u)+ V() 6+ [VS(u+06,)76, - Vf(u)T6,]
= f(0) + BV (W) b + (L = BV F(w)T 60+ (V F(u + 66,176 — V f()75.)]
= f(u)+BVS(w)T8 +[(1 = B)Vf(u) 6n+ [|8all2C] (4.29)
where we have set [or convenience

Vf(u + 06n)T5n - Vf(u)Tén
”5n”2

(=

Note tha! from the assumptions we have

by,
A

IC] = 1(Vf(u+06,) = V(u)" =] < 40)|6a]ls < Y]I6all2 (4.30)

The relation (4.29) together with the S-condition (4.27) imply that
(1 - 5)vf(un)T6n T ”&1”2( _>. 0
With the inequality {4.30) this immediately yields

6nil2

YWéall2 > - (4.31)

a
It remains to be shown that we can always select a sequence u,, provided 6, is a descent
direction and s and «a are carefully selected.



Theorem 4.3 Lel [ : RN — R be continuously differentiable on RN with f(z) > 0 for all
z € RM. Let u,6 € RN be such tha: Vf(1)T6 < 0. Then given 0 < a < pu < 1, there exst
Ao > A > 0 such that u + A6 satisfies (4.22) wnd '4.23) for uny A € (Ae. AL).

This result is well-known and the proof may be found in Deunis and Schnabel [S]. A
similar result for the 4 condition, can also easily be established, see for example [4]. Note the
proof suggests that condition (4.23), which is the usual a-condition of Armijo and Goldstein,
will always be satisfied if we replaced é by A4, with a small enough A. As is also indicated
by the proof of Theorem 4.1, the purpose of (4.22) is to prevent the step size Aé,, from being
too small.

The above theorem resembles Altman’s principle [12] of which it is a more practical
version. Convergence of sequences built from Altman’s principle can be proved as a corollary
to the above theorem.

Corollary 4.4 Let f: RN — R be a function satisfying the assumptions of Theorem 4.1.
Let 0 < pp < 1 and define a sequence {u,} by unt1 = un + Anpa, with V f(un) p, < 0, and
where A, is the smallest positive root of the equation in X,

V f(u, + Apn)Tpn = ny(un)Tpﬂ (4.32)

Then the conditions (4.21), (4.22) and (4.23) of Theorem 4.1 are salisfied, for any « € (0, ),
with &, = Appn. In addition, f(u, + Ap.) < f(u,) for any X in the interval [0,A,].

Proof: The conditions (4.21) and (4.22) are obviously satisfied. To prove (4.23), we use
the Mean Value Theorem which tells us that there is a certain 8, between 0 and 1 such that

S(un 4 Anpn) = f(un) = V£ (un 4+ 02pn) pa (4.33)
Define the function of A
s(A) = V f(un + Apa) pr — 1V (1) Tpu.

We have that s(0) < 0. Also, since A, is the smallest positive root of (4.32) and V f(u,)?p, <
0, by continuity of s/ 1), we must have

Vf(tun 4 Apn) pn — 1V f(un)Tpn <0 for all A < A, (4.34)
Therefore,
f(”n + /\nl’n) - f(“n) = vf(un + OAnpv‘)Tpn < /‘vf(“n)’rl’n < “vf(un)Tpn (4'35)

for any a € (0, ). The second part of the corollary follows immediately by replacing A, by
Ain (4.33) and then exploiting (4.34). O

Assume now that we are to solve the local optimization problem at each step exactly. The
search over the whole subspace will be difficult and we mst add a few additional constraints.

I



We consider two possibilities. First, we may restrict the search to be in the level set of f at
"y, 1.e., to the subset

L) = {6 € K™ f(un +6) < f(u.)) (4.36)

This results in,

f(unsr) = min{f(un + 8)|8 € L(un)}. (4.37)

Note that if there is a descent direction in K, as is always assumned, the subset L, will not
be reduced to the single point {0}. We do not know whether the minimum in the above
problem is reached without any additional assumptions. Here we will assume that the initial
level set L(ug) is compact so that all subsequent level sets are also compact.

A more restrictive possibility is to search only among the candidates u of K, such that
the whole interval [0, 6] is included in the level set L(u,). Here the interval [z,y] denctes the
set of all points of the form tz + (1 — t)y where t € [0,1]. This results in the definition,

f(un41) = min{f(un + 6)|[0,6] C L(un)} (4.38)

This condition on é implies that V78§ < 0, in the differentiable case. Again, if there is a
descent direction in K™, the set of admissible points in (4.38) is not reduced to the single
point u,,.

Although we will not show that the other assumptions of Theorem 4.1 are satisfied, we
will establish that its conclusion is valid.

Corollary 4.5 Let f: RN — R, a function satisfying the assumptions of Theorem 4.1 and
such that the initial level set L(ug) is compact and there is a descent direction in K™. Let
{un} be defined by unyy = uy, + 68, where §, is defined through either of (4.37) or (4.38).
Then,

lim Vf(u,)” n

oo 16allz

0. (4.39)

Proof: We will use an argument borrowed from [12], referred to as the “comparison
principle.” For this we select an arbitrary 4 < 1, for example u = 1/2, and an arbitrary
a < u, for example « = 1/4. From u, we create an auxiliary iterate u,4; that satisfies the
assumption of Corollary 4.4 with p, = 6, = un41 — u,. Since there is a descent direction in
K™ then p, cannot be zero. We can assume, without loss of generality that ¥V f(1u,)7p, < 0.
If not we only need to change the sign of p,,. From Corollary 4.4, the assumptions of Theorem
4.1 are satisfied and therefore the inequality (4.26) in the proof of the thzorem holds, with
u,41 replaced by w,4, (and p, replaced by A, p, but this has no efl ct):

ool =p) r 6]
f(u) = f(tnr) 2 ——‘)‘-’— l:vf("n) ”6””2} . (4.10)

Note that by the second part of Corollary 3.3, tin4y is admissible for either (4.37) or
(4.38).  As a result, from the definition of wnyy it is clear that f(u,yr) > f(unyy), and

12



substituting this in (4.40) yields

a(l - ) 6 1
flun) = f(tap) 2 ——— [vf(un)T 671 ] . (4.41)
g 16sll2
Now the proof of Theorem 4.1 can be completed in the same way to establish the desired
result. O

5 Numerical Experiments
As a simple example, we consider the nonlinear partial differential equation
—Au+auz + Ae" = f (5.42)

over the unit square of R? with Dirichlet boundary conditions. This is a standard problem a
simplified form of which is known as the Bratu problem [?]. After discretization by 5-point
finite differencing, we obtain a large system of nonlinez- equations of size N, where N = n,?
and n. is the number of mesh points in each direction. The right Land side f is chosen
to be the zero vector. It is known tihat for A > 0 there is always a unique solution to the
problem, see [?]. In this test we took @ = 0.1 and n, = 16 yielding a nonlinear system
of N = 225 unknowns. ‘We tested our preliminary version of gmrls with three values of A,
namely A = +5.0,—7, and —10.0. In the first two cases we found a solution to F(u) = 0
but a solution does not seem to exist for the case A = —10. Thus, for A = —10, our
code computes the minimum of ||F(u)|2. The code incorporates an automatic switch to a
nonlinear least squares projection technique, based on a simple test on the a-condition. If
the GMRES solution is not admissible, a nonlincar least squares solution method, namely
the routine Imdif from MINPACK, is called to minimize f(u+ V,,y) as was described earlier.
The toleraiice o for the admissibility test is set to o = 1073,
We show the following information for each case.

\ ,

Iflag - The termination flag (see below);

Icount - The total number of function calls pertormed;

Nfls - The total number of function calls that have been made by the
the nonlinear least-squares routine in the projection process;

Nii - Total number of outer iterations;

Nisi - The total number of calls to the nonlinear least-squares
solver.

The stopping test involves three different criteria. The first is on the falue of f. The
program is ¢ opped as soon as f < toll, and Iflag takes the output value one. The second
test relies on the value of V f{w)76/||6]|2. The corresponmding flag is Iflag=2. Finally, the
third criterion is on the norm of the step 8 = u,41 —u, and the corresponding lag is Iflag=3.
For all three tests the tolerance was set to 1079,
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ear.

A | Dimens. || Iflag | Icount | Nfls | Nli { Nisi
10,0 m=10 2 3560 1 2949 | 51 49
m =15 2| 1288 [ 10501 14 | 13

-7.0 | m=10 2 629 | 432 | 17 9
m =15 2 4361 319 7 4

50 | m=10 ] 67 0 7 0
m =15 1 62 0 5 0

Table 5.1: Numerical results for the Bratu problem with different values of A

Notice that for the harder case when A = —10, most of the projection steps are noniin-

The least squares problems arising in these methods are solved by MINPACK and their

solution is sometimes rather expensive. Anotaer consideration here is that we do not precon-
dition the equations. Preconditining, e.g., by the Laplacean could reduce the computational
work in a substantial manner.
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